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Abstract

Time series modeling has attracted extensive research efforts;
however, achieving both reliable efficiency and interpretabil-
ity from a unified model still remains a challenging problem.
Among the literature, shapelets offer interpretable and explana-
tory insights in the classification tasks, while most existing
works ignore the differing representative power at different
time slices, as well as (more importantly) the evolution pattern
of shapelets. In this paper, we propose to extract time-aware
shapelets by designing a two-level timing factor. Moreover,
we define and construct the shapelet evolution graph, which
captures how shapelets evolve over time and can be incorpo-
rated into the time series embeddings by graph embedding
algorithms. To validate whether the representations obtained
in this way can be applied effectively in various scenarios, we
conduct experiments based on three public time series datasets,
and two real-world datasets from different domains. Experi-
mental results clearly show the improvements achieved by our
approach compared with 16 state-of-the-art baselines.

1 Introduction

Time series modeling aims to discover the temporal rela-
tionships within chronologically arranged data. The key is-
sue here is how to extract the representative features of
a time series. A large part of previous frameworks range
from classical feature engineering and representation learn-
ing to deep learning based models. While these methods
have achieved good performance (Malhotra et al. 2016;
Johnson et al. 2016), they have also been subject to criti-
cism regarding their lack of interpretability. On the other
hand, shapelets, the time series subsequences that are rep-
resentative of a class (Ye and Keogh 2011), can offer di-
rectly interpretable and explanatory insights in the classifica-
tion scenario, and shapelet-based models have proven to be
promising in various practical domains (Ye and Keogh 2009;
Xing, Pei, and Yu 2012; Lines et al. 2012; Rakthanmanon
and Keogh 2013; Grabocka et al. 2014; Hills et al. 2014;
Bostrom and Bagnall 2017).

Existing efforts have mainly considered shapelets as static.
However, in the real world, shapelets are often dynamic,
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which is reflected in two respects. First, the same shapelet ap-
pearing at different time slices may have a range of different
impacts. For instance, in the scenario of detecting electric-
ity theft, low electricity consumption in summer or winter
is more suspicious than it is in spring, as refrigeration or
heating equipments costs more electrical power. Second, de-
termining the ways in which shapelets evolve is vital to a full
understanding of a time series. In fact, shapelets with small
values at a particular time can hardly distinguish an electricity
thief from a normal user who indeed regularly consumes a
low level of electricity. An alternative method would involve
identifying users who once had high electricity consumption
shapelets but suddenly consumes very few electrical power
for a while. In other words, an important clue here is how
shapelets evolve over time. We refer to the subsequences of
a time series that are able to reflect its representativeness at
different time slices as time-aware shapelets.

There are several challenges involved in modeling the dy-
namics of shapelets. First, how can time-aware shapelets
be defined, and then, be extracted? Traditional algorithms
generate a set of static time series subsequences as candi-
dates, then select subsequences with the most discrimina-
tory power according to certain criterion (Lines et al. 2012).
However, dynamic shapelets have not been well defined yet,
and the criterion used before are often not differentiable
if parameterized timing weights are added. To the best of
our knowledge, the question of how time-aware shapelets
might be extracted remains open. Second, how can the evolu-
tions of shapelets be captured? One possible solution would
be to explore the shapelet sequences, which consist of or-
dered shapelets assigned to each segment of the time se-
ries. However, as each segment may be assigned by several
shapelets with different probabilities, enumerating all possi-
ble shapelet sequences is quite time-consuming, where the
time complexity is O(m*) (m is the number of segments
and K is the number of shapelets). A more reliable solution
would be to construct a transition matrix (graph) whereby
each element (edge) represents the probability of a shapelet
appearing after another, but how to construct and analyze
such matrix (graph) reasonably is nontrivial. Third, how can
the evolution patterns of shapelets for modeling the given
time series be utilized? Inspired by the recent success of
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Figure 1: Illustration of (a) electricity consumption data, (b) two shapelets and corresponding timing factors extracted from
the observed time series, and (c) the shapelet evolution graph. In shapelet #72, there is an abnormal peak at the beginning, and then a
continuous drop until the end, while its timing factor is highlighted mainly in Jan, Mar, and Jun. As for the normal shapelet #67, weights in the
timing factor may just reflect the frequency of its occurrence. In figure (c), the size of each vertex is proportional to its weighted in-degree, and

the width of the edge is proportional to its betweenness.

representation learning (Perozzi, Al-Rfou, and Skiena 2014;
Grover and Leskovec 2016), embedding the evolution pat-
terns of shapelets into a latent feature space X can be effective.
Then it seems feasible to represent the original time series
by using a vector extended from X. Designing a reasonable
representation learning algorithm is the final challenge.

To address the abovementioned challenges, in this paper,
we propose a novel approach to learn the representations of
a time series by extracting time-aware shapelets and con-
structing a shapelet evolution graph. We first define a two-
level timing factor to quantify the discriminatory power of
shapelets at different time, then construct a graph to represent
the evolution patterns of shapelets. Fig. 1 shows an example
from real-world electricity consumption record data: Fig. la
demonstrates the one-year electricity usage of a user who
has stolen electrical power from January to May while us-
ing electrical power normally in the remaining months. We
assign each month the most representative shapelet at that
time and present the shapelets #72 and #67, along with their
timing factors in Figure 1b, where dark areas indicate that
the corresponding shapelet is more discriminative relative
to light areas. The shapelet evolution graph is presented in
Fig. 1c, illustrating how a shapelet would transfer from one to
another in a normal case: for the normal electricity consump-
tion record, there is a clear path for its shapelet transition (#90
— #67 — #85) in the graph. For the abnormal data, however,
the path (#85 — #72 — #7) does not exist, indicating that
the connectivity of the shapelet transition path provides an
evidential basis for detecting an abnormal time series. Fi-
nally, we translate the problem of learning representations of
shapelets and time series into a graph embedding problem.

We summarize our contributions to the field as follows: 1)
We propose the concept of time-aware shapelets and design a

learning algorithm to extract them; 2) We construct a shapelet
evolution graph and translate the problem of representation
learning for shapelets and time series into graph embedding;
and 3) We validate the effectiveness of our approach based on
three public and two real-world datasets. Experimental results
show that our approach achieves notably better performance
when compared with 16 state-of-the-art baselines.

2 Preliminaries

A time series set T' = {t,--- , 7|}, where each ¢ contains
n chronologically arranged elements, i.e.,t = {@1, -, }.
A segment s of t is a contiguous subsequence, i.e., s =
{z;, - ,x;}. If t can be divided by m segments of equal
length [, then we have t = {{@jkt1, s Tiskt1}, 0 < k <
m— 1}. To measure the dissimilarity of sequences, we denote
the distance between two segments s; and s; as d(s;, s;),
where d(-, -) can be intuitively formalized as the Euclidean
Distance (ED). But ED cannot deal with varied sequence
length and timing shifts, and in the context of time series
modeling, time warping techniques are often used to address
such problems. The central idea of time warping is to find an
appropriate alignment for the given pair of sequences, where
an alignment is defined as

Definition 1 Alignment. Given two segments s; and s; with
length l; and l; respectively, an alignment a = (a1, a2) is a
pair of two index sequences of length p, satisfying that

1<ap(l) < < aklp) =,

ap(n+1) —ax(n) <1,

fork=1i,j,and1 <n<p-1
We denote all possible alignments for two segments s; and
sj as A(s;, s;), then one popular time-warping based mea-
surement, DTW (Dynamic Time Warping), can be illustrated

(1)



as Eq. (2), where 7(s;, sj|a) is a predefined dissimilarity
for two sequences under the alignment a (Miiller 2007). We
refer the alignment achieving the minimum in Eq. (2) as a*.

dDTW(Si7 Sj) = minaGA(si,Sj) T(Si7 Sj|a> @)

We can further measure the dissimilarity between a seg-
ment s and a time series t = {87 - - - 8, }. Inspired by the
literature that we often say a segment s is close to t if there

exists some segment s’ in ¢ between which the distance of s
is rather small, we define the distance between s and ¢ as

D(S, t) = minlgkgm d(S, Sk) (3)

Based on these definitions, previous work have proposed
novel methods to extract typical subsequences, i.e., shapelets,
to distinguish the representative power of segments:

Definition 2 Shapelet. A shapelet v is a segment that is rep-
resentative of a certain class. More precisely, it can separate
T into two smaller sets, one that is close to v and another far
from v by some specific criteria, such that for a time series
classification task, positive and negative samples can be put
into different groups. The criteria can be formalized as

L= _g(spos(vyT)>Sneg(UaT)) 4)
L measures the dissimilarity between positive and negative
samples towards the shapelet v. S, (v, T') denotes the set of
distances with respect to a specific group 7}, i.e., positive or
negative class; the function g takes two finite sets as input,
returns a scalar value to indicate how far these two sets are,
and it can be information gain (Ye and Keogh 2011), or some
dissimilarity measurements on sets, i.e., KL divergence.

3 Time2Graph Framework

In this section, we present a novel representation learning
algorithm for time series modeling. We name the proposed
framework as Time2Graph, as it transforms time series to a
graph with shapelets and their transitions. We extract time-
aware shapelets from a large pool of candidates (Sec. 3.1),
then construct the Shapelet Evolution Graph to capture the
correlations between shapelets (Sec. 3.2), and finally learn
the time series representation vectors (Sec. 3.3) by concate-
nating segment embeddings which is composed by shapelet
embeddings obtained from the Shapelet Evolution Graph.

3.1 Time-Aware Shapelet Extraction

Existing works often ignore that subsequences may have vari-
ous representative powers at different time. For example, low
consumption of electrical power in spring is normal, whereas
it is a strong signal for identifying abnormal users in summer,
since high temperatures often lead to more electricity usage.
Therefore, we consider time-aware shapelets in this paper.
We define two factors for quantitatively measuring the
timing effects of shapelets at different levels. Specifically, we
introduce the local factor w,, to denote the inner importance
of the n-th element of a particular shapelet, then the distance
between a shapelet v and a segment s is redefined as

d(v, s|lw) = 7(v, s|la”, w)

p 1
(D, Wai ) (Va(i) — Saz)?)?

&)

where a* refers to the best alignment for DTW which we
have discussed in Eq. (2). The intuitive explanation of Eq. (5)
is to project the weight w onto the DTW alignment path.
On the other hand, at a global level, we aim to measure the
timing effects across segments on the discriminatory power of
shapelets. It is inspired from the intuition that shapelets may
represent totally different meaning at different time steps, and
it is straightforward to measure such deviations by adding
segment-level weights. Formally, we set a global factor w,
to capture the cross-segments influence, then the distance
between a shapelet v and a time series ¢ can be rewritten as

D(v, tlw,u) = ming <g<m Wk - d(v, si|w) (6)

where t is divided into m segments, i.e., t = {81, -+, S }.
Eq. (6) denotes the two-level time-aware distance between
a shapelet v and a time series t, and the parameters w, u
associated with each specific shapelet can be learned sepa-
rately under some proper criteria. Given a classification task,
we establish a supervised learning method to select the most
important time-aware shapelets and learn corresponding tim-
ing factors w; and w; for each shapelet v;. In particular, we
have a pool of segments as shapelet candidates that selected
from all subsequences, and a set of time series 7" with labels.
We only consider binary classification here, to which it is
straightforward to extend multinomial classification. For each
shapelet candidate v, we modify Eq. (4) as

L= —g(Spos (0, T), Sneg (v, T)) + AlJwl| + el[ul| (7)

where A and e are the hyperparameters of penalties, and the
differentiable function g(-, -) measures the distances between
distributions of two finite sets. In practice, we assume that
the given sets both follow some particular distributions, e.g.,
Gaussian Distribution. We can easily estimate the distribution
parameters by closed-form solutions, and then the gradients
of g can be derived from those differentiable parameters.
After learning the timing factors from shapelet candidates,
we select the top K shapelets with minimal loss in Eq. (7).

3.2 Shapelet Evolution Graph

After obtaining shapelets, many works use BoP (Baydogan et
al. 2013) or similar methods to represent the time series, but
these algorithms ignore the correlations between shapelets.
Here, correlations consist of the co-occurrence along with the
occurrence order. To capture such relationship, we propose
the concept of Shapelet Evolution Graph as follows:

Definition 3 Shapelet Evolution Graph. It is a directed and
weighted graph G = (V,E) in which V consists of K
vertices, each denoting a shapelet, and each directed edge
ei; € E is associated with a weight w;;, indicating the oc-
currence probability of shapelet v; € V followed by another
shapelet v; € V' in the same time series.

Graph Construction (Algorithm 1). We first assign each
segment s; of each time series to several shapelets that have
the closest distances to s; according to the time-aware dissim-
ilarity. Then a problem naturally rises as how far the distance
would be considered as closest? One simple but effective
solution is to predefine a threshold § such that distances less



than § are treated as close, and in practice, we can determine
0 by experimental statistics on the training dataset. For con-
venience, we denote those shapelets assigned to segment s;
as v; ., and say that v;; is the j-th assignment of s;. For the
purpose of measuring how reasonable our assignment is, we
standardize assignment probability p; ; as

—dij(viy, 8i)

max(d; . (Vi x, 8;)) — min(d; . (vi«, 8;))

max(d;*(vi’*, Si))

Pij = (8)

where d; . (v; «, S;) = U, [i] * d(v; «, s;|ws) (Eq. (5)), with
the constraint that d; , < J. So the shapelets set v; , is
assigned to segment s; with probability p; ., and v;11 . is
assigned to s;;1 with probability p; 1 . respectively, where
s; is followed by s, in one time series. Then, for each pair
(4, k), we create a weighted edge from shapelet v; ; to V41,
with weight p; ; - p;1.%. and merge all duplicated edges as
one by summing up their weights. Finally, we normalize the
edge weights sourced from each node as 1, which naturally
interprets the edge weight between each pair of nodes, i.e., v;
and v; into the conditional probability P(v;|v;) that shapelet
v, being transformed into v; in an adjacent time step.

Algorithm 1: Shapelet Evolution Graph Construction

Input:
time series set 7" = {t1,--- , |7},
K shapelets {v; - - - v }, distance threshold §
Output:
Shapelet evolution graph G
: Initialize the graph G with K vertices
: for all segment s; of ¢ in T" do
for all shapelet v; where d(v;, s|w;) * u;[i] < & do
Assign v; to s; with probability defined in Eq. (8)
end for
: end for
: for all adjacent segment pair (s;, s;+1) of tin T do
for all assigned shapelet pair (v; j, Vi+1,,) do
Add directed edge e; ;, with weight p; ; * p;y1 %
end for
: end for
: Normalize the edge weights for each vertex
: return G
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3.3 Representation Learning

Finally, we learn the representations for both the shapelets
and the given time series by using the shapelet evolution
graph constructed as above. We first employ an existing
graph embedding algorithm (DeepWalk (Perozzi, Al-Rfou,
and Skiena 2014)) to obtain vertex (shapelet) representation
vectors i1 € RE, where B is the embedding size (latent di-
mension). In our case, a path in G intuitively reflects possible
transitions between shapelets.

Next, for a time series t = {s; - - - 8,,, } with correspond-
ing assigned shapelets {vq . - - - Uy« } and assignment prob-
abilities {p1 «, - - - Pm,«}, We retrieve each shapelet v; ;’s
representation vector p(v; ;) multiplied by assignment prob-
ability p; ;, and sum them over each segment. If there exists

some segment that we cannot assign any shapelets to it by
applying the predefined distance threshold, the embeddings
of this segment would be left as empty. It is reasonable since
shapelet embeddings are always non-zero which is guaran-
teed by graph embedding models (more precisely, shapelet
embeddings are bound to be normalized), so segments with-
out shapelet assignments are clearly distinguished by empty
values. By far, we get the segment representations, and finally
concatenate all those m segment embedding vectors to obtain
the representation vector ® for time series ¢ as follows:

®; = (Zj pij - m(vij)), 1<i<m 9)

The representation vector of the time series can then be
applied as features for various time series classification tasks,
by the way of feeding the embedding features into an outer
classifier. See the formulation of the representation learn-
ing framework in Algorithm 2, and the details of the down-
streaming classification tasks are introduced in Sec. 4.1.

Algorithm 2: Time Series Embedding Framework
Input:
time series ¢ = {81 - - - 8;, }, K shapelets {v; - - - vx }
shapelet evolution graph G, graph embedding size B
QOutput:
time series embedding vector ®
: Embeds graph G as u® with representation-size as B
: Initialize ® as an empty vector.
: for all segment s; int,1 <7< mdo
temp < zero vectors with size B
for all shapelet v; ; that assigned to s; do
temp +=p; j * pB(v; ;), where shapelet
assignment can be referred from Algorithm 1
end for
®.append(temp)
end for
return ®
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4 Experiments
4.1 Experimental Setup

We use three public datasets, Earthquakes (EQS), WormsT-
woClass (WTC) and Strawberry (STB) from the UCR Time
Series Archive (Dau et al. 2018), along with two real-world
datasets, Electricity Consumption Records (ECR) from State
Grid of China and Network Traffic Flow (NTF) from China
Telecom., to validate our proposed model. Table 1 shows the
overall statistics of those five datasets:

Dataset
m ‘EQS WTC STB ECR NTF

461 258 983 60,872 5,950
253 422 643 23 6.4

Table 1: Overall statistics of 5 datasets in the experiments.

#(time series)
positive ratio(%)

We briefly introduce the two real-world datasets as follows:
Electricity Consumption Records (ECR). This dataset is



public dataset real-world dataset
Datasets EQS WTC STB ECR NTF
Methods Accuracy Prec Recall Fi Prec Recall Fj

NN-ED 68.22 62.41 95.60 1871 1048 1344 | 37.71 4635 41.59

NN-DTW 70.31 68.16 95.53 15,52  18.15 16.73 | 33.20 43.75 37.75

NN-WDTW 69.50 67.74 95.44 15,52 1815 16.73 | 3529 46.86 40.27

NN-CID 69.41 69.56 95.51 18.18 13.71 15.63 | 32.56 4375 37.33

DDDTW 70.79 70.92 95.60 18.78 13.71 15.85 | 30.48 42.71 35.58

XGBoost (origin) 74.82 62.34 95.92 3836 1948 2586 | 7143 17.86 28.57

XGBoost (feature) 75.54 6494  97.03* | 56.82 16.23 25.25 | 80.00* 21.43 33.80

BoP 74.80  74.42% 96.45 14.86 4.44 6.83 4340 4792 45.55

TSF 74.67 68.51 96.27 26.32  2.02 3.75 57.52 33.85 42.62

EE 73.50 71.74 95.88 10.18 3347 15.62 | 4298 27.08 33.23

SAXVSM 73.76 72.10 96.97 21.59 4274 28.69 | 30.19 50.00 37.65

LS 74.22 73.57 92.49 0.00 0.00 0.00 0.00 0.00 0.00

FS 74.66 70.58 91.66 1045 79.84* 18.48 | 63.55 3542 4549

LPS 66.78 74.26 96.35 17.00 24.19 19.97 | 24.17 30.21 26.85

LSTM 74.82 42.86 63.84 13.64 3186 19.11 | 7.22 16.67 10.08

VAE 71.22 62.34 71.35 19.02 14.11 16.20 | 59.79 30.21 40.14

Shapelet-Seq 75.53 55.84 78.10 1437 6694 23.66 | 1845 61.98* 28.44

Time2Graph-static 76.98 70.13 95.68 33.81 29.22 31.36 | 80.00% 28.57 42.11
Time2Graph 79.14*%  72.73 96.76 | 30.10* 40.26 34.44*| 71.52* 56.25 62.97*

Table 2: Comparison of classification performance on the public and real-world datasets (%). Results of the Time2Graph model are
bold, and a star (*) means the best performance among all methods.

provided by the State Grid Corporation of China and contains
the daily electricity consumption records (K-Wh) of 60,872
users over the span of one year (2017). For every user, it
records the daily total electricity usage, on-peak usage, and
off-peak usage. Some users may take unauthorized actions
concerning the electricity meter or power supply lines to cut
costs (i.e., electricity theft), and there are a total of 1,433
(2.3%) users who have been manually confirmed as having
stolen electrical power. Given users and their electricity con-
sumption record, the task is to determine which users have
stolen electrical power in the past year.

Network Traffic Flow (NTF). This dataset is provided by
China Telecom, the major mobile telecommunications ser-
vice provider in China. It consists of 5,950 network traffic
series, each of which describes the hourly inflow and out-
flow of different servers, from April 6th 2017 to May 15th
2017. When an abnormal flow goes through server ports and
some process is suddenly dead, an alarm state is recorded
by the operating system (objective ground-truth); there are
383 (6.4%) servers with abnormal flow series. The goal is to
use the daily network traffic data to detect whether there are
abnormal flows during a period.

Besides, we select several UCR datasets from many can-
didates by the following reasons that: 1) to maintain the
consistency of evaluation metrics between the real-world and
public datasets, we only consider binary-label ones in UCR;
2) we have to make sure that there are enough training cases
because we need sufficient samples to capture the normal
transitions between shapelets (many binary-label datasets in
UCR only have less than 100 training samples), and 3) we
omit all datasets categorized as “image”, because the pro-

posed intuition (timing factor, shapelet evolutions) may not
be appropriate for time series transformed from images. After
filtering based on the abovementioned criterion, and due to
space limitation, we only present those three in the paper.
We compare our proposed Time2Graph model with several
groups of the state-of-the-art baselines:
Distance-based Models. Previous work has stated that in
most time series classification tasks, 1-NN-based methods
are hard to beat (Wang et al. 2013; Bagnall et al. 2017). As for
the distance metric applied in 1-NN, we use Euclidean Dis-
tance (ED), Dynamic Time Warping (DTW), Weighed DTW
(WDTW) (Jeong, Jeong, and Omitaomu 2011), Complexity-
Invariant Distance (CID) (Batista et al. 2014) and Derivative
DTW (DDDTW) (Goérecki and fuczak 2013) as candidates.
Feature-based Models. We first extract some statistical fea-
tures (the mean, standard deviation, etc.), or just take the raw
time series as input (XGBoost (feature/origin)), and use the
same outer classifier as which Time2Graph uses (xgboost) to
validate the effectiveness of the representation learning frame-
work. Besides, several popular feature-based algorithms have
been proposed for time series classification tasks. In this pa-
per, we choose some typical algorithms to compare with our
model: Bag-of-Patterns (BoP) (Lin, Khade, and Li 2012),
Time Series Forest (TSF) (Deng et al. 2013), Elastic Ensem-
bles (EE) (Lines and Bagnall 2015), and Vector Space Model
using SAX (SAXVSM) (Senin and Malinchik 2013).
Shapelet-based Models. Another typical group of algo-
rithms extracts shapelets to capture the intrinsic features
of the original time series data. In this paper, we use several
famous shapelet-based frameworks as baselines: Learn Time
Series Shapelets (LS) (Grabocka et al. 2014), Fast Shapelets



(FS) (Rakthanmanon and Keogh 2013) and Learned Pattern
Similarity (LPS) (Baydogan and Runger 2016).

Deep learning models. We consider two commonly-used
deep models, LSTM and VAE, due to their efficacy in feature-
representation tasks and processing time series data.
Time2Graph variants. We also compare Time2Graph model
with its derivatives by modifying some key components to
see how they fare: a) We sample the most possible shapelet
sequence (i.e., each segment is assigned with highest assign-
ment probability) for each time series, and use LSTM to
conduct end-to-end classifications, denoted as Shapelet-Seq;
b) We learn shapelets without considering timing factors, and
embed them in the same way of Time2Graph, and refer this
method as Time2Graph-static.

We choose XGBoost (Chen and Guestrin 2016) as the outer
classifier, and use 5-fold nested cross-validation to conduct
fine-tuning on hyper-parameters. As for the reproducibility,
the source codes, along with the implementation details, pa-
rameter settings and documentations, can be found on the
project homepage: https://petecheng.github.io/Time2Graph.

4.2 Comparison Results

Table 2 shows the comparison results for classification tasks.
All three public datasets from UCR Archive uniformly use
accuracy as evaluation metric, and for those two real-world
datasets, which are both very imbalanced, we show the pre-
diction precision, recall and F1 score.

We conclude from Table 2 that the Time2Graph model
achieves competitive performance on the three public
datasets. Specifically, on the EQS dataset, Time2Graph
achieves the highest accuracy (79.14%), while on the other
two datasets, Time2Graph also beats most of the baseline
methods. When it comes to the real-world datasets, it is clear
that Time2Graph significantly outperforms all baselines in
the F1 score metric. Even though some baseline methods
achieve higher precision or recall, all of them seem to en-
counter biases on positive or negative samples.

We next compare Time2Graph with its variance. As men-
tioned in Sec. 1, Shapelet-Seq model suffers from the size
of possible sequences, and when we only sample sequences
with the highest probability, its performance fails to match
several baselines, since a substantial amount of information
is lost during sequence sub-sampling. The performance incre-
mentation from 7ime2Graph-Static to Time2Graph demon-
strates the predictive power brought by time-aware shapelets,
and the additional interpretability and insights derived from
timing factors are shown in Sec. 4.4. In summary, the
Time2Graph model is better at finding effective patterns, as
well as capturing evolutionary characteristics in time series.

4.3 Parameter Analysis
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Figure 2: Parameter analysis.

We examine the sensitivities of three important hyperpa-
rameters: number of selected shapelets K, graph embedding
size B and segment length [. Due to space limitations, we
only present the results for the public datasets, which are
shown in Fig. 2. From the results, we see that K should
be large enough to capture a sufficient number of shapelets;
while when K is too large, it will bring in less representative
shapelets as noise (Fig. 2a). Another parameter that should
be tuned is the segment length [. We can see from Fig. 2c
that it achieves the best results when [ is 24, which is exactly
the same as the number of hours in a day. It seems not to be
a coincidence that, in ECR dataset, the best segment length
is 30, i.e., the number of days in a month, while the optimal
choice for NTF is 24, again the number of hours in a day. We
may conclude that the segment length [ should be carefully
selected based on the physical characteristics of the original
data source. As for the embedding size, we see that accu-
racy improves in most cases when it is increasing (Fig. 2b),
whereas the efficiency will be sacrificed. It is also difficult to
train the outer classifiers for features with dimensions that
are too large; accordingly, an appropriate graph embedding
size is necessary for better performance.

4.4 Case Study of Time-Aware Shapelets

In the following two sections, we conduct several case stud-
ies to explore the interpretability of our proposed model,
and we use ECR dataset as the example since much domain
knowledge is available here from experts.

The first question is, do the shapelets we extracted indeed
have varying levels of discriminatory power? As shown in
Fig. 4a, the training loss grows much slower at the right
end, and the KL divergence of distributions of distances be-
tween positive and negative samples towards the top (ranked
1-50) shapelets on the test set is statistically significantly
larger than that for the bottom (ranked 51-100) shapelets
(p = 7.7 % 1079). This reflects the effectiveness of the se-
lected shapelets to some extent. To rigorously check the dif-
ferences in shapelet variance, we show each shapelet’s mean
value and standard deviation (std) in Fig. 4b. Again, the std of
top shapelets are statistically significantly larger than those
of bottom ones (p = 7.5 * 1072) , while the mean values
across shapelets exhibit very little difference; this suggests
that typical patterns intend to be unstable. And to make fur-
ther illustration, we compare the top-1 shapelet extracted
by LS (a popular baseline) and Time2Graph in Fig. 4c, d.
The scale and trends of these two shapelets differ a lot, and
Fig. 4d provides additional information towards time-aware
shapelets in 72G: this specific shapelet matters in spring and
summer (from month-level timing factor), and weights more
at the peak of time series data during the month (from day-
level timing factor). Such clue is the distinct advantage of our
proposed model on the interpretability.

4.5 Case Study of the Shapelet Evolution Graph

We finally conduct experiments to construct shapelet evo-
lution graphs for different time steps in order to see how
the graphs change and how the nodes evolve. Fig. 3 shows
two graphs, one for January and another for July. In January,
shapelet #45 has large in/out degrees, and its corresponding
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Figure 3: Shapelet evolution graphs at different times. The positions of vertices in the two graphs are the same. The vertex size is
proportional to its weighted in-degree, the same as the edge width to its betweenness.
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Figure 4: Shapelet analysis. (a) shows the train and test loss; (b)
shows the mean and std of shapelets; (c) compares the top (rank-1)
shapelet between Learn Shapelets (LS) and time2graph (T2G), and
(d) visualizes the timing factors of the 72G-shapelet in (c).

timing factor is highlighted in January and February (dark
areas). It indicates that shapelet #45 is likely to be a common
pattern at the beginning of a year. As for July, shapelet #45
is no longer as important as it was in January. Meanwhile,
shapelet #42, which is almost an isolated point in January,
becomes very important in July. Although we do not ex-
plicitly take seasonal information into consideration when
constructing shapelet evolution graphs, the inclusion of the
timing factors means that they are already incorporated into
the process of the graph generation.

5 Related Work

Time series modeling have attracted extensive research over
a wide range of fields, such as image alignment (Peng et
al. 2014), speech recognition (Shimodaira et al. 2002), etc.
One important technique here is Dynamic Time Warping
(DTW) (Miiller 2007), which aims to find the proper distance
measurement between time series data, and a wide range
of applications (Jeong, Jeong, and Omitaomu 2011; Gérecki

and Luczak 2013) have been proposed based on this measure.

Traditional time series classification models try to extract
efficient features from original data and develop a well-
trained classifier, such as BoP (Lin, Khade, and Li 2012),
TSF (Deng et al. 2013), EE (Lines and Bagnall 2015), etc.
However, the major challenge is that there are no explicit
features in sequences (Xing, Pei, and Keogh 2010), so much
research has focused on time series embedding(Bagnall et
al. 2017): Algorithms based on DTW and traditional em-
bedding techniques (Hayashi, Mizuhara, and Suematsu )
aim to project original time series data into feature-vector
space; Symbolic representations (Lin et al. 2007; 2003;
Schifer 2015) transform time series using symbols such
as characters in a given alphabet; Shapelet discovery-based
models (Ye and Keogh 2011; Lines et al. 2012; Rakthan-
manon and Keogh 2013; Hou, Kwok, and Zurada 2016;
Baydogan and Runger 2016), from another perspective,
try to find typical subsequences based on certain criteria
such as information gain. Another relevant work to this pa-
per is graph embedding, and one popular category(Goyal
and Ferrara 2018) lies in the random walk-based methods,
such as DeepWalk (Perozzi, Al-Rfou, and Skiena 2014)
and node2vec (Grover and Leskovec 2016). Besides, dy-
namic graph embedding which aims to model the net-
work dynamics and evolutions over time (Zhu et al. 2016;
Zhou et al. 2018) also attracts great interests in recent years.

6 Conclusion and Discussion

In this paper, we proposed a novel framework Time2Graph to
learn time-aware shapelets for time series representations.
Moreover, to capture the co-occurrence and peer influence
between shapelets, we put forward the idea of considering a
time series as a graph, in which the nodes refer to shapelets,
and weighted edges denote transitions between shapelets
with varying probabilities. By conducting experiments on
three public datasets from UCR Archive and two real-world
datasets, we demonstrate the effectiveness and interpretability
of our proposed model.
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